
Advantages of 310

- 310 provides similar strength to 309 at high temperatures
- 310 has greater scaling resistance and is rated for higher temperatures than 309
- 310 machines similarly to 309
- 310 is readily available in diameters up to 6 inches

Chemical Composition, %								
	Cr	Ni	Si	Mn	N	С	Се	Fe
310 UNS S31008	25.0	20.0	0.5	1.6	-	0.05		balance
309 UNS S30908	23.0	13.0	0.8	1.6	-	0.05	-	balance

Creep Rupture Properties

Typical	Tensile Properties, Plate			
	Temperature, ° F	70	1200	
310	Ultimate Tensile Strength, ksi	75	54.1	
	0.2% Yield Strength, ksi	30	20.7	
309	Ultimate Tensile Strength, ksi	75	52.0	
	0.2% Yield Strength, ksi	30	22.0	

ASME Section VIII Div. 1

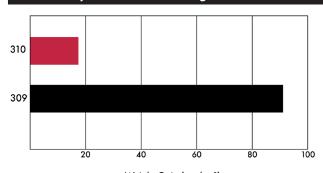
Maximum Design Allowable Stresses

Muximoni Design Anow	ubic Jii caaca				
Temperature, ° F	1100	1200	1350	1500	1650
310H , ksi	7.6	4.0	1.7	0.75	-
309H, ksi	7.6	4.0	1.7	0.75	-



Machinability

The machinability rating is determined by measuring the weighed averages of the normal cutting speed, surface finish, and tool life for each material. Machinability rating less than 100% is more difficult to machine than B1112 and material with a value more than 100% is easier.


	Machinability* (Surface ft/min)	Speed as a % of B1112	Hardness (Nominal, HRB)	Yield Strength (Min, ksi)
310 UNS S31008, S31009	70-75	44	78	30
309 UNS S30908	70-75	44	83	30

Maximum Suggested Temperature Limit in Air

Temperature (°F)

2000°F Cyclic Oxidation Testing in Air

Weight Gain (mg/cm²)

TECHNICAL QUESTIONS?

OUR TEAM OF METALLURGISTS ARE HERE TO HELP.

PHONE: 1.800.521.0332 (Ask for a Metallurgist) **EMAIL:** metallurgical-help@rolledalloys.com

Additional resources available at rolledalloys.com/technical-resources/

Rolled Alloys and RA are registered trademarks of Rolled Alloys. The data and information in this printed matter are believed to be reliable. However, this material is not intended as a substitute for competent professional engineering assistance which is a requisite to any specific application. Rolled Alloys makes no warranty and assumes no legal liability or responsibility for results to be obtained in any particular situation, and shall not be liable for any direct, indirect, special, or consequential damage therefrom. This material is subject to revision without prior notice.